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ABSTRACT

Magnetotelluric prospecting is a method of geophysical exploration

that makes use of the fluctuations in the natural electric and magnetic fields

that surround the earth. These fields can be measured at the surface of the

earth and they are related to each other by a surface impedance that is a

function of the conductivity structure of the earth's substrata.

This report describes some new methods for analyzing and interpreting

magnetotelluric data. A discussion Is given of the forms of the surface

impedance for various classes of models, including one, two and three

dimensional models. Here, an n dimensional model is one in which the

parameters describing the model are functions of at most n space coordinates.

Methods are discussed for estimating the strike direction for data that is

at least approximately two dimensional. A new linearized approach to the

one dimensional problem is discussed. Subject to the approximations of the

linearization, it is shown that under the appropriate transformations of the

frequency and depth scales, the reciprocal of the surface impedance as a

function of frequency is equal to the square root of the conductivity as a

function of depth convolved with a linear response function that is somewhat

like a tow pass filter.

Included in this report is a comparison of several methods of esti-

mating the auto and cross power density spectra of measured field data, and

of several methods for estimating the surface impedance from these spectra.

The effects of noise upon these estimates are considered in some detail.

Special emphasis is given to several types of artificial noise including

aliasing, round off or digitizer noise, and truncation effects. Truncation

effects are of the most interest since they depend upon the particular window

used in the spectral analysis.
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I. INTRODUCTION

Magnetotelluric prospecting is a relatively new method of-geophysical

exploration, although the electric and magnetic fields that it employs have

long been observed. More than a century ago it was recognized by several

investigators that a correlation existed between the variations in the telluric

currents and the geomagnetic field. In 1940 Chapman and Bartels reviewed

the various theories on the relationship between these fields. In the late

1940's and early 1950's several investigators such as Tikhonov in the USSR;

Kato, Kikuchi, Rikitake, and Yokoto in Japan; and Cagniard in France began

to recognize the electromagnetic nature of these fields.

In 1953 Cagniard published a paper in which he gave a quantitative

description of the relationship between the electric and magnetic fields at

the surface of a horizontally layered earth. Soon thereafter many people

began making theoretical and experimental contributions to the field of mag-

netotellurics. By the late 1950's, it was recognized by several investigators

that the scalar impedance described by Cagniard was not sufficient to describe

many of the frequently encountered geologic situations. For an anisotropic

or laterally inhomogeneous earth, the impedance becomes a tensor quantity

(Neves, 1957), (Rankin, 1960), (Cantwell, 1960),(Kovtun, 1961), (Rokityanskii,

1961), (d'Erceville and Kunetz, 1962), (Bostick and Smith, 1962), (Srivastava,

1963). Principal contributors to the growing body of literature on magneto-

tellurics, in addition to those previously mentioned, include Berdichevskii,

Vladimirov, and Kolmakov in the USSR, Porstendorfer in Germany, Adam and

Vero of the Hungarian Academy of Sciences, Fournier in France, and many

people in the U.S.A. and Canada. Hugo Fournier (1966) has a comprehensive

history and bibliography of the science of magnetotellurics.

The tensor relationship between the E (electric) and H (magnetic) fields

at any given frequency can be expressed as



Ex xx Zxy

where rectangular cartesian coordinates have been indicated. This tensor

impedance Z, a function of frequency and space coordinates, depends upon

the conductivity of the earth in the surrounding area, and if the horizontal

wavelengths of the incident fields are sufficientlS, long, Z will be independent

of time and source polarization. Therefore, Z can be a useful measure of the

conductivity structure of the earth, and in fact it can sometimes be interpreted

almost completely in terms of a simplified earth model.

The magnetotelluric problem can conveniently be divided into three

parts: data acquisition, analysis, and modeling. Data acquisition includes

the instrumentation and all-of the field work involved with recording the

electric and magnetic field variations. Analysis includes processing the

field measurements to determine estimates of the Z tensor and other related

parameters. Modeling consists of interpreting this impedance tensor in terms

of a particular earth model.

The research that went into this thesis was aimed at developing better

methods of magnetotelluric analysis and interpretation. The thesis itself

provides for the first time a unified treatment of the techniques developed as

a result of this research. The treatment is facilitated by first considering

the forms of theoretical impedance tensors for several classes of models.

Next, various methods are presented for estimating actual impedance tensors

from measured field data. Finally, the effects that various types of noise

have upon the impedance estimates are considered.
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II. ONE DIMENSIONAL MODELS

In this chapter several one dimensional models, that is, models which

have medium parameters that are functions of only one space coordinate will

be considered.

A. Homogeneous Half Space Model

The simplest of all possible models is one in which the earth is

considered to be a homogeneous, isotropic half space of conductivity a,

permittivity C, permeability P . Within any medium of constant C, e, and P,

if we assume time variations of the form e j w t , Maxwell's equations

V x E jWU H (2.1)

v x H = (Y + jwe) E (2.2)

V = 0 (2.3)

V• E=0 (2.4)

combine to give the vector Helmholtz equaLons

2-4

vH= H

where
2 2

2 =jwUa - W 2aC (2.5)

In rectangular cartesian coordinates, this vector equation sepa-

rates, so that each of the components of the E and H fields satisfies the

scalar Helmholtz equation. Elementary solutions to this equation are of the

form

-(Yx x + Y y + Yz)
Ac

where 3



2 Y = JIAG - W 2 l (2.6)
x y z

The general solution is obtained by summing various elemencary solutions with

different values of A, Yx Y, and Yz, subject to the constraints of equation

(2.6). Returning for the moment to an elementary solution, if the coordinate

axes are aligned such that positive z is down, and the direction of propaga-

tion is in the x-z plane, then the elementary solution is of the form

-Y XX- Y zz 2 2 2
Aex z ; Y2 + + (2.7)

x z

Thus, for a homogeneous plane electromagnetic wave with its

direction oiL propagation in the x-z plane, each of the comr)onents of E and

H will be of the form shown in (2.7).

Since any homogeneous plane wave can be separated into TE

(horizontal E field only) and TM (horizontal H field only) modes, and since

the equations are linear with respect to the fields, one can consider the two

modes separately.

For the TE mode,

E =E =0
X Z

and equation (2.1) becomes

6E aE

i _ax JwL(iH + JH + k H)

Thus

Yz Ey =JwtIHx

-Y E =- JwP Hxy z

H =0

y

4



In particular,

Ez _ = -U (2.8)
ZTE H Y

x z

For the TM mode,

H =H =0x z

and equation (2.2) becomes

b H 6H7- + = ( + jw)(iE +TE + kE)

-z ax x y

Thus

Y H = (a+jw)E
z y x

-YH =H +jw E
x y z

E =0
y

and

E Y jw1A Y
x z z (2.9)

TM H (a+jwC) 2
y Y

For the range of parameters normally encountered in magneto-

telluric work, displacement currents in the earth can be neglected. That

is to say

we << (2.10)

so that

I .. ...... .. . .



I2
y2 jww (2.11)

Continuity of the tangential fields at the surface z = 0 requires

that

Y Y (2.12)x air x earth

For a plane wave striking the earth at a real angle 8 measured

from normal incidence,

Yx air = jw /ie- sin 9 (2.13)

Equation (2. 10), (2. 12) and (2. 13) together imply that

IY xI2<< hy 12. Therefore one may take

Y z =/jW - (2.14)z

Under these conditions, equations (2.8) and (2.9) give

ZTE ZTM w (2. 15)Sa

This implies that the impedance is independent of the polarization of the

elementary solution, Thus, any general solution made up.of.elementary solu-

tions satisfying the conditions of equation (2.14) will give a scalar impedance

z = (2.16)

which will relate any horizontal component of the total H field to the orthogo-

nal horizontal component of the E field.

Actually it is nct necessary to restrict the general solution for

the incident fields to modes corresponding to real angles of incidence, as

6



indicated by equation (2.13). Elementary solutions for which I x1 2 > W2 PC will

still give rise to total fields whit.h satisfy equation (2.16) provided

wYxj2<< WuJG (2.17)

It is convenient to define a parameter 6, called skin depth, for

conductive materials by

2/wP (2.18)

Then

z -(i + j)z/6 (2.19)e =e

Thus 6 is a measure of the depth that an electromagnetic field

will penetrate into a conductive medium. It is the depth at which the field

will have been attenuated to l/e of its surface value.

If one then defines the horizontal wavelength X of an elementary

solution by

X = 
2

" jkx =k ' x
x

then a statement that is equivalent to equation (2. 17) is that

X>> 6 (2.20)

In other words, the horizontal wavelength is long compared to the skin depth.

In summary then, for an earth model consisting of a homogeneous

half space of conductivity a, with incident fields having horizontal wave-

lengths long compared to a skin depth, the surface impedance will be given

by equation (2.16).

7



B. Horizontally Layered Model

The next model that might be considered is one in which the earth

is represented by a sc. of horizontal layers, each with a different conductivity.

This is usually known as the Cagniard model since it is the one that he consid-

ered in his classic paper. One assumes N layers, as shown in figure 1, and

assumes elementary solutions in each layer of the form

z+ Y .z -Yxi x
-(ze +B~e z)e

(A1 1

where

y2 +Y2 = 2 = jW Pa (2.21)
xi zi li

By requiring that the tangential fields be continuous at each boundary, and

noting that B N = 0 since the fields must vanish for large z, one finds that

the impedance Z. looking down from the top of the ith layer is given by
1

-2Y zid
1- R. e Z

Zi Zoi -2Yzid i ; i=, 2, N-1

l+R. e
1

(2.22)

ZN =ZoN

where d is the thickness of the ith layer, R. is a reflection coefficient definedI 1

by

R. -Zi z i + 1 i l., 2, . . N-1 (2.23)
1 Z +Zi

and Zoi is the characteristic,. hnpedance of the ith layer. As with the homo-

geneous half space, the characteristic impedance for the TE mode is

8
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ZTE =J"/Y (2.24)
ziz

and for the TM mode is

zTM = j2 YA/2 (2.25)

Again if one assumes that the horizontal wavelengths of the incident

fields are long compared to a skin depth in each layer, the two modes become

equivalent and

Z. = Pc/. (2.26)

In either case, one may start at the bottom layer and work up,

computing R. and Z. using the recursion equations (2.23) and (2.22) until Z ,

the surface impedance, is obtained.

Recall from equation (2. 16) that for a homogeneous half space

Wzl
IZI 2

Correspondingly, for a layered model, it is customary to define

an apparent conductivity 5 (in) or apparent resistivity P (w) by
a a

a(W) WU 1 (2.27)a IZ(w) 1 2 Pa(W)

Some sample curves of apparent resistivity versus frequency for

several models are plotted in figures 2 and 3. For high frequencies, a =a 1'

and for low frequencies, G = N  Qualitatively it appears that G (w.) is a
a Na

"smoothed out" version of a(z) with frequency w being inversely related to

depth z.

9



Although it is a simple matter to obtain the surface impedance

Z (w) in terms of a (z) for any layered model, the inverse problem of finding

a(z) for a specified Z (w) is not so simple. It is a nonlinear problem that

in general can be solved only by using iterative techniques. Computer

programs are available for least squares fitting Z(j) curves to N layer

models (Patrick, 1969).

Since a (w) is a smooth curve, one might suspect that fine
a

details in a(z) cannot be determined from a (w). This in fact turns out to
a

be the case; only gross trends in a (z) can successfully be determined

from a (w).a

C. General One Dimensional Model

Consider the case where 0(z) is a continuously varying function

of z rather than being restricted to a finite number of homogeneour layers.

In this case, the recursion equations (2.22) and (2.23) are replaced by a

differential equation for Z. There are several ways to obtain the differential

equation. One way is to combine the recursion eqtiations (2.22) and (2.23),

and let Az replace d, and consider the limit as Az approaches zero. Another

simpler method pointed out by Swift (1967) uses Maxwell's equations directly.

Consider the TE mode with E = E = 0. Equations (2. 1) and (2.2) give

BE

z z x
y x z

Now

10



E
ZTE H

x

ZTE1 E E Y H

z H az H2 az
x

[JwI H] +E Y [r -+HI

H jw H + 2  y -axE+ !
x Hx

E 
2E Y

H2 jWP x 2

x

2Y
2  x ,2
TE jwA. E

2
aZ2 (2.28)

Y

Similarly for the TM mode one obtains

;3TM y 2
TM (I - - + (;,TM (2.29)

Again when the incident fields have horizontal wavelengths large

compared to a skin depth, the TE and TM modes become equivalent and

JZ LI + Z2 (2.30)
6z



This differential equation is of course nonlinear in Z; however,

if one assumes a a(z) profile such that a(z) = a1, a constant for z > z1 , then

Z(z 1) = /jw /a 1 and equation (2.30) can be numerically integrated from

z =2 to z = 0 to obtain an expression for the surface impedance in terms of

the conductivity profile.

Thus, as with the layered model, the forward going problem of

finding the surface impedance in terms of a specified conductivity profile is

relatively simple. Again, the inverse problem of finding the a(z) profile which

produces a specified surface impedance must be worked iteratively.

D. Linearized One Dimensional Model

Consider Lhe following simplification of the one dimensional prob-

lem. Assume that the E fi.Id as a function of depth z has the form

-Ioy(Z') dz'

E (Z) = Ae 0 (2.31)
x

where A is independent of z and

Y (z) = ,/jwi P(Z) (2.32)

From Maxwell's equations

dH
Y -aEdz x

Integrating with respect to z and noting that HI- must vanish as z -. , one hasY
dH =

Sz Y~- dz a E xdZ
0 0

or

12



z)
- oy(z') dz'

H() -Hy(o) - y (z) Ae dz

0

Thus, if one defines the surface admittance Y(w) as being the reciprocal of the

surface impedance, then
z

H (z=o) Y(z) dz'Y(w)- = - 0 ~~
Ex(Z=o) dz (2.33)

0

or , from equation (2.32)
z

-j47VJ a z') dz'

Y(W) = W(z) e dz (2.34)

0

Now consider the following transformation. Let

z

e = JoTz) dz' (2.35)

0

and

-2
e =I7 (2.36)

Noting that

e da. = a dz (2.37)

and

13



, Z -- 0 -OL(I -o

z =-a, =O

equation (2.34) becomes

O ( -2) e Iy(a2 a /-CLe(j e e a

or
- 2 O J e- (a2 -)  (a2  a )
a(2) J-r e-(1"j

Y(() e = 7ale da (2.38)
-0O

Noting from equation (2.27) that

equation (2.38) gives

(a a -(% g(x (2.39)

where

-a(1+T e - a
g() =1Te- • e (2.40)

Thus, under this simplified model, which in effect neglects inter-

nal reflections in the E field, the apparent conductivity can be obtained by

convolving the actual conductivity profile with a complex linear response

14



function in a-space. A plot of the magnitude of g(a) versus a is shown in

figure 4. The magritude of g(() peaks up at a = 0 and decays as l increases.

Also

Cog(a) dal = I

So g(a), although it. is complex, is somewhat like the response of a low pass

filter with unity DC gain. This is consistent with the earlier observation

that a (w) is a "smoothed out" version of a(z) with w inversely related to z.a

In practice, this simplified approach is probably not very useful

by itself since the assumed form of the E field in equation (2.31) is not too

realistic. Strictly speaking it is valid only if

dazz) << y(z)(z) (2.41)

for'all z. On the other hand this approach could be quite useful for obtaining

a first guess to he used in an iterative inversion scheme. In particular if

one simply assumes that

rT ((X) ( C ) (2.42)
a

then frequency and depth may be related through equations (2.35) and (2.36)

to give

a (Z) a! a (za (W)) (2.43)aa

where

Co dw
z (W) 0 (2.44)

15



Thus, an approximate depth scale may be attached to the frequency scale for

an apparent conductivity curve. Notice that for a () = a, a constant,
equation (2.44) reduces to the standard skin depth, so one may think of z ('Ll)a

as sort of an integrated skin depth. In fact, for cases where equation (2.41)

is satisfied, z (w) will be the depth at which the fields have decayed to I/e
a

of their surface value.

E. Generalized Skin Depth

As suggested by the preceding paragraph, it will be useful to

generalize the idea of skin depth for an inhomogeneous model. For a homo-

geneous medium, the skin depth was defined to be the depth at which the

fields are attenuated to I/e of their surface values. For an inhomogeneous

model, the fields of course do not have a simple exponential decay; however,

if one defines 6 (.) to be the depth at which

6 W
ReE S 1/jwu) dz] =1 (2.45)

0

then 6 will be a good measure of the depth of penetration of the fields and

as such it may be taken as the skin depth.

In the discussion of the horizontally layered model, the state-

,.n+ was made that the inc.ent fields culd h treated as normally incident

plane waves if the actual horizontal wavelengths were long compared to a

skin depth in each layer since for that case

[ Y .aY.

A less restrictive yet adequate requirement is that

d azdZ S Y dz (2.46)

0 0

16



where 6 is defined by equation (2.45). Clearly this condition will exist pro-

vided

6 6

Yxdz << y dz (2.47)

o 0

2 2 2
where y+Y =Y 2 =jwPa. But Yx=jkx = j 2 r/X. Thus

y = 2T6 (2.48)Yx dz-

0

Also, from equation (2.45), the definition of 6,

6

S ydz = V/'i

Thus, the condition (2.47) will exist provided

26<<

or

6 << x/.-2T

So, if the horizontal wavelengths are long compared to the skin depth de-

fined by equation (2.45), the incident fields may in effect be treated as

normally incident plane waves.

in conclusion then, the forward going one dimensional problem

is reasonably simple. If the incident fields are assumed to have horizontal

wavelengths long compared to a skin depth, then any horizontal component

of the H field is related to the orthogonal horizontal component of the E

17



field by a scalar impedance which is related to the conductivity profile. The

inverse problem of estimating the conductivity profile from a measured surface

impedance, while it is nonlinear has been worked with some success using

iterative techniques. The simple linearized model discussed here should be

useful for providing a first guess for such iterative solutions.

18



III. TWO AND THREE DIMENSIONAL MODELS

The scalar surface impedance discussed in the previous chapter is

not suffiCient to describe the relationship between the horizontal E and H

fields for a model that has lateral variations in conductivity. In this chaper

some general relationships will be developed for two dimensional models

(models for which a is a function of two space coordinates, the vertical or

z coordinate and one horizontal coordinate, say x) and for three dimen-

sional models (models for which a is a function of all three space coordi-

nates). It will be shown that for these models the impedance must be

expressed as a rank two tensor as was indicated in equation (1. 1).

A. Z and Z for Two Dimensional Models
}:: TE ZTM

Consider again Maxwell's equations as stated in equations (2.1)

through (2.4). If one assumes that the conductivity a is a function of x and

z, equations (2.1) through (2.3) are still applicable; however, equation (2.4)

must be replaced by

A ( V 1 = 0 (3.1)

where once again it is assumed that displacement currents in the earth are

negligible. If one also assumes once again that the horizontal wavelengths

of the incident fields are long compared to a skin depth, then in the earth,

everything is essentially uniform in the y direction so that equations (2.1)

through (2.3) together with equation (3. 1) in component form become

6E
_ -jauH (3.2)Bz x

bE ,aE
xjw H (3.3)

az ax y

bE

6_ _ jwPH (3.4)z

19



aH
-Y = a (3.5)

xz x

x _ _z = E (3.6)
8Z bx y

- E (3.7)
bx z

aH 6H
xz (3.8)

b(a E) 6(a Ez )
SE+ - 0 (3.9)B x Bz

Observe that the only field components involved in equations (3.2), (3.4),

(3.6), and (3.8) are E , Hx , and H . Also, the only components entering
x Z

equations (3.3), (3.5), (3.7), and (3.9) are E x ,E z , and H y. Thus it is
apparent that the two modes are decoupled and may be considered separately.

The mode involving E y, Hx , and Hz is usually called the TE or E parallel

mode since the E field is horizontal and parallel to the strike. The mode

involving Ex , Ez , and H is called the TM or E perpendicular mode since

the magnetic field is horizontal and the electric field is perpendicular to the

strike. The strike is the direction along which there are no variations In

Litai model nramters. in this case, the y direction.

Thus, for a two-dimensional model two impedances are required

to define the relationship between the horizontal components of the E and H

fields: Z _E -1/H a ZTM and = E /H . Exact solutions for Z TE(w,x) and

ZTM(w,x) in terms of a(x,z) are not tractable analytically although a few

approximate cases have been worked out. In general, solutions are obtain-

able only by using numerical methods such as finite differencing over a two

dimensional grid. Computer programs are available which implement these

20



techniques (Patrick, 1969). It would appear that the inverse problem of

finding o(x,z) in terms of ZTE (w,x) and ZTM(w ,x) could in principle be solved

using iterative techniques similar to those used for the one dimensional inverse

problem. It is believed that such a solution would be unique, although no

proof Is known. On the other hand, the number of calculations involved for

grids large enough to be of interest is so great that the problem seems to be

out of the range of present day computers. Nevertheless, useful and instructive

information about two dimensional modeling can be obtained from solutions of

the forward going problem.

B. Z in a General Coordinate System for Two Dimensional Models

As was shown above, for a two dimensional model the TE and TM

modes decouple when one of the horizontal coordinates is aligned with the

strike. It will now be useful to obtain the relationship between the tangential

fields in a coordinate system in which the horizontal axes are arbitrarily

oriented.

Suppose that the x' - y' coordinate system as shown in figure 5

is aligned with the strike, so that
E'Z H' (3.10)

x TMy

and

E'= ' (3.11)
y TE x

Suppose that the x-y coordinate system is oriented at an angle e with

respect to the x' - y' system as shown In figure 5. Then

E = E' cos8 +E' sin8 (3.12)x x y

E E sin8 +E cos8 (313)y x y
and

H = H' cos8 + H' sinG (3.14)x x y

H -H' sin 8 + H' cos 8 (3.15)
y x y
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or alternately

H' = H cos e - H sin 8 (3.16)
x x y

H' = H sin 8 +H cos e (3.17)y x y

Combining these equations gives

E = E' cos e + E' sin 8
x x y

(ZTMHy) cos 8 + (-ZTEH) sin 8

ZTM(Hx sine + H yCos 8) cos e - z TE(Hx cos 8 -

- H sin9) siney
2=Hx[(ZTM - ZTE)sin8cos 0] +Hy[ZTMCos 2 +

+ ZTE sin 2 0]

Thus if one defines

E =Z H +Z H
x xx x xy y

then

ZxY =(ZTM-ZTE)sin Ocos e

(M TM2 TE ie= (ZM -Z'T ) sin 2 8

and

2 2

ZxyZ eo s
8 +ZTE Sin 2 e

=(ZTM +ZTE (ZTM-ZTE)

Similarly for the other components, one obtains

Zyx  (ZTM ZTE + ZTM Z ZoE

and
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Z= (ZTE ZTM) sin28

In summary

ZI sin28 2+ ZI cos1 2

= L~sln1 e z z co~ej(3.18)
-Z2+Z1 cos 28 -Z sin2H

where

zL=(ZTM- ZTE)/2 (3.19)

Z2 = (ZTM + ZTE)/2 (3.20)

In general, then, for a two dimensional model, the tangential

components of E and H are related by a rank two tensor impedance. The

diagonal terms of the Z matrix are in general negatives of each other and they

reduce to zero when the axes are aligned with the strike.

C. General Form of Z for Three Dimensional Models

For three dimensional models where a is a function of all three

space coordinates, the six field components are in general all coupled to each

other, so it is not possible to separate the analysis into two distinct modes

as was done for the two dimensional case. Nevertheless, it is possible to

make some general statements about the relationshlp between the tangential

components of the E and H fields.

It will now be shown that a rank two tensor impedance of the form

shown in equation (1. 1) is unique and stable, sabjec: once again of course to

the assumption that the horizontal wavelengths of the incident fields are long

compared to a skin depth in the earth. Also it will be useful for later purposes

to establish that in general the vertical magnetic field can be expressed as a

linear combination of the two horizontal H field components. That is,
H =r H +r H (3.21)

z zx x zy y
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where r and r are dimensionless constants, subject also of course tozx zy
the assumption that the incident fields have horizontal wavelengths long

compared to a skin depth. This assumption implies that the incident fields

may be treated as normally incident plane waves. This being the case, the

incident fields can be separated into two orthogonal linearly polarized plane

waves. Clearly, for a linearly polarized normally incident plane wave, each

of the components of the total E and H fields will be proportional to the ampli-

tude of the incident wave. Thus, if the incident E is linearly polarized in the x

direction then

Ex =a1 Ex1

Hx b 1 Elxi

Hy b 2 Exi

H c Ez 1 xi

where Exi is the incident field. Similarly, If the incident E is linearly polar-

ized in the y direction

E aE
x 3 yi

E =aEy 4Eyi

H ~bEx 3 yi

H b Ey 4 yi

Hz =2 Eyi

Since all of the field equations are linear with respect to E and H, superposition

must hold. Thus for a general normally incident plane wave

E x a 1E +a ' EExi 3yi
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E = a E +a 4Ey

H = b E +b Ex Ilxi 3 y1

H = b2 Ex +b Ey 2i4 yl

H = C E +c E
z Ilxi 2 YI

or in matrix notation [[A]
E Ex

H x -E L i-

and

z K:]

If [B] is nonsingular, then

LEy Hy[E =l yBl[
so that

B:] =[A][B) E:EH
y Y

and
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rH

H = [ C ][ B ] - [ H( ( 3 . 2 2 )

ThusLJ

[Z] = [A] [B] (3.23)

and

Er] = [r zx ,r ] = [C][B ]- 1  (3.24)

So [Z] and [r] are defined, and E , E and H can be expressed as linearcobiaiosx y z
combinations of H and H . The only problem that might arise would be if

[B] were singular. Singularity of [B] implies that

b I b4 = b 2 3  (3.25)

Now for any reasonable earth model, the reflection coefficient for the mag-

netic field at the surface is almost unity so that the total H field is close to

twice the incident field. Thus, a normally incident plane wave with E linearly

polarized in the x direction (and hence H linearly polarized in the y direction)

will give rise to total fields such that H will be considerably greater than Hy x
Thus

lb21 >> lb11

Similarly, for a normally Incident plane wave with E linearly polarized in the

y direction, H will be somewhat greater than H . Thus
x y

lb3  Ib 41

So clearly

lb 2 b3 1 >> lb1b4 1

Comparing this with equation (3.25) indicates that for any reasonable earth

model, [B] will not be singular, and hence Z Is defined by equation (3.23).

Next it will be useful to observe the behavior of the elements of

Z as the coordinate system is rotated. As with the two dimensional model,
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the elements of Z in the x-y coordinate system will be expressed in terms

of the elements of Z in the x'-y' coordinate system as shown in figure 5.

The derivation is the same as for the two dimensional case except that

equations (3.10) and (3.11) are replaced by
4-

E' = Z' H' +Z' H' (3.26)
x xx x xy y

and

E' Z' H' +Z' H' (3.27)
y yx x yy y

Thus

E E' cos e +E' sine
x x y

= (Z' H' +Z' H') cos e + (Zy H' +Z' H' ) sin 8
xx x y y yx x yy y

= (Z' Cose+Z sine) H +(Zx -c ose+z' 'sixe) H'xx x x (xy yy y

S(Z' Cos e +Z' sine) (H cos e- H sin8)xx yx x y

+(Zx cose+Z' sine)(H sine+H cose)
xy vy x y

[Z' cos 2+Z' sin 2e+(Z' +Zx )s[n~cosO]H
xx yy yx xy x

+Z Cos 2e-z2 sin 2 8 +(Z -Zx sinecose]H
xy yx yy x

So that

2 in 2  ,yx)Z Z' cos e+Z' sin e+(z' +Z'sinecosexx xx yy xy

z' +z' z' -z ' Z Z'

2Y 2 cos2e+ sin2e0

Similar expressions for Zx, Z x , and Z are obtained. The results are
xy yx yy

Z xx=Z +Z cos2 +Z3 sin2e (3.28)

Z x=Z4 4- Z 3 cos2 8  Z 2 sin2e8 (3.29)
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Z x -Z 4 +Z3 cos28 -Z sin28 (3.30)

Z - Z2 cos 2 8 - 3 sin 2 e (3.31)
yy

where

z' + z'

z xx y (3.32)

ZI - ZI

z3  - (334

xx Y(3.35)
2 - 2

Z' + Zi
Z3 x¥2 yx (3.34)

Ze - Zi
Z4 x Y x (3.35)

If one further defines

zo() = Z oos2 - Z- sin2e (3.36)

Then equations (3.28) through (3.31) become

Zxx= Z1 -z 0o(6+450 ) (3.37)

Zxy = Z4 + zo(e) (3.38)

Zyx = -Z 4 + Zo(e) (3.39)

Zyy =z 1 +Zo(e+459 (3.40)

Th. function Zo () traces an ellipse in the complex plane centered

on the origin as 0 varies from. zero to 1800 .. To show. that this.ks true take

z o(8) = x + jy

where x and y are real. From equation (3.36)
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x = Re [Z 3 1 cos 28 - Re [Z 2 sin 2 8

= A cos (2 8 - a)

y =Im Z3 Icos 28- Im [Z 2 sin 28

B cos (2 8 -

I etting

28-cy = ep

2-a =p

gives

x = A cos ep

and

y B cos (9 - 90o ) = C cos ep + D sin p

Thus

Cos =
A

and

sin cp = ±i-(x/A)

So that

y C[;2 + [ 1(x/A)j

or
2 2

2 2C C 2 D2 x 2 )y - xy+ j =D (l-A2

orA Aor

A2y 2 + (C 2+D) x 22ACxy - D2A = 0

This is the standard form for an ellipse centered on the origin. Thus ZO(8)

traces an ellipse in the complex plane as 8 varies. Referring to equations

(3.37) through (3.40) one observes that each of the elements of Z then

traces an ellipse in the complex plane as the measuring axes are rotated.
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D. Comparison of Z Matrix for Two and Three Dimensional Models

As was shown in the previous section, for a three dimensional

model, the elements of Z trace ellipses in the complex plane as the measuring

axes are rotated. From equation (3.18) one observes that for two dimensional

models, the theta dependent parts of the elements of Z have fixed phases.

Thus the ellipses degenerate to straight lines for the two dimensional case.

Also one observes from equation (3.18) that the diagonal terms of the Z matrix

for the two dimensional case have no constant term. Thus the straight line

representing the lochi of Z and Z in the complex plane passes through the
xx yy

origin. Figure 6 Illustrates the general form of the locii of the elements of Z

in the complex plane for the two and three dimensional cases.

At the present time solutions for the general three dimensional

problem are not available. For this reason, it is usually desirable to find one

dimensional or two dimensional models that approximately fit measured data

which in general is of course three dimensional. It frequently happens that,

over some limited frequency range, measured data looks almost two dimensional;

that is, the Z ellipses almost collapse to straight lines and the diagonal terms

of the Z matrix are almost negatives of each other. This situation will occur

whenever there existsa horizontal direction along which the conductivity cross

section is nearly constant for a distance of several skin depths Whenever

this situation exists, it is desirable to determine the approximate strike direc-

tion and to estimate the corresponding ZTE and ZTM for comparison with

theoretical Z's from two dimensional models.

Several methods have been proposed for estimating the principal

impedance axes [Swift, 1967] all of which converge to the correct result when

the data is actually two dimensional. From the point of view of the impedance

ellipses, the most reasonable way seems to be to take

Z = Z Z' (3.41)

where Z' is the semt-major axis of the ellipse Z (8) as defined in equation (3.36)
0 0
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This method yields the principal directions as the values of e which maximize

1Z0 (0) I. A little algebra will show that these values of e are given by the

equation

2(x 2 x 3 + y 2y 3)
tan 4 (x 2 2 2 2) (3.42)

where x. and yI are the rear and imaginary parts of Z.t respectively, with

Z being defined by equations (3.33) and (3.34). Incidentally, this method

gives the same result as Swift's method of finding the angle e which maxi'-
mizes (IZ xy12 Z yx 2 or minimizes (1Z xx 2 + I 1 2

Having thus obtained estimates of the principal axes of the

impedance matrix and the corresponding principal impedance values, it is

*desirable to have some measure of how two dimensional the data actually is.

To accomplish this, there are two parameters that should be considered.

First, there is the ratio of the constant terms in the diagonal and off diagonal

elements of the Z matrix. In other words, the ratio Z I/Z 4 where Z and Z4

are defined In equations (3.32) and (3.35). Second, there Is the ratio of the

minor axis to the major axis of the Zo () ellipse. The magnitudes of both of

these ratios should be small compared to unity in order for the data to fit a

two dimensional model.

E. Use of H for Determining the Strike Directionz
In the previous section, an indication was given as to how one

might estimate the principal axes of a measured impedance matrix which is

approximately two dimensional. However, no method was given for determin-

ing which axis represents the strike direction. This matter can be easily

resolved in Zerms of H , the vertical magnetic field. Recall from equationsz

(3.2) through (3.9) that H appears only in the equations for the TE mode.z

Thus, with the x'-y' axes aligned with the strike, as in section B of this

chapter
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E' =-Z H'y TE

and

H' =r' H'
z TE x

In the x-y coordinate system, at an angle e from the x'-y' system

H = H' = r' H' = r' (Hxcose- H sine)
z z TE x TE x y

H =H r' cos8 -H r'E. sine (3.43)z x TE yT

Recall from equation. (3.21) that for the general three dimensional model

H' = r' H' +r' H'

Z zx x zy y

so that

H H' r' H' +r' H'
z z zx x zy y

=r' (Hxcose- H sine) +r'zy(Hx sin +H cose)
zx y zyxy

=H (r' cose+r' sine0) +H (r' cose-r' sine)
xzx zy yzy zx

Thus

r = r' cos e + r' sin 8 (3.44)
zx zx zy

and

r = r' cos e- r' sine (3.45)zy zy zx

Comparison of equations (3.44) and (3.45) with equation (3.36) indicates that

r and r like Z (0) trace ellipses in the complex plane as 8 varies.zx zy
However, the Important difference Is that the magnitudes of r and r have

zx zy
only one peak every 1800 instead of every 9 0' like Z (6). Furthermore, one

observes from equation (3.43) that in the two dimensional limit, the angle 6

that maximizes r Is the strike direction.zx
Thus, when measured data is approximately two dimensional, the

angle that maximizes lrzxI should correspond to one of the principal axes of
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the Z matrix, and so it is possible to estimate the approximate strike direction

and the corresponding Z and Z

ZTE TM
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IV. METHODS FOR ESTIMATING THE Z MATRIX FROM MEASURED DATA

Now that a considerable amount of attention has been given to the

forms of the Z matrix for various classes of models and to possible interpre-

tations of Z, it is time to consider some methods for estimating Z from

measured E and H field data.

A. The General Problem

Consider the equation

E =Z H +Z H
x xx x xy y

where Ex , Hx , and H may be considered to be Fourier transforms of measuredY
electric and magnetic field data. If one has two independent measurements of

E, Hx , and H yat a given frequency, denoted by ExlI Hxl, Hy1 , Ex2' Hx 2

and Hy 2 respectively, then

E xi H

I E HEx2 HY2

xxxl yl

H H
x2 y2l

and

H Exl xl

Hx2 Ex2

Zxy H xi Hx2

Hx2 Hy2

provided

H H -HH 0O (4.1)
xl y2 x2Hyl
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Equation (4.1) simply states the fact that the two field measurements must

have different source polarizations. If the two have the sarne polarization,

they are not independent.

Since any physical measurement of E or H will include some

noise, it is usually desirable to make more than two independent measure-

ments, and then to use some type of averaging that will reduce the effects

of the noise. Suppose one has n measurements of Ex , Hx and H yat a

given frequency. One can then estimate Z and Z in the mean square
xx xy

sense. That is, define

n

= (E Z H -Z H )(E Z H Zi H )
_Jxi xxxi xy yi xi xx xi xy yi

i=l

where Exi is the complex conjugate of Exi etc., and then find the values

of Z and Z that minimize ,K Setting the derivatives of * with respectxx xy

to the real and imaginary parts of Z to zero yields
xx

n n n

Ei xi H Zxx 2. HxiHxi+Zxy H yH x (4.2)xixi xxyix yi xi
i=l i=l i=1

Similarly, setting the derivatives of 4 with respect to the real and imagi-

nary parts of Z to zero yieldsxy

n n n

Z, ExiHyi = Zxx L.' H yi +i+Z xy H .H. (4.3)
i1l i=l i=l

,.Notice that the summations represent auto and cross power density spectra.

Equations (4.2) and (4.3) may then be solved s. nultaneously for Z andxx

Z xy. This solution will minimize the error caused by noise on E . It isxy X

possible to define other me±n square estimates that minimize other types

of noise. For example, if one takes
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\ n * *

-, -. Zy H * Z(, ----- ) yi - _Hx i _ ,
i=l xl Zx Z

xx xx

the resulting solution will minimize the error introduced by noise on H
x

There are four distinct equations that arise from the various

mean square estimates. In terms of the auto and cross power density

spectra, they are

E E* = Z H E* + Z H E* (4.4)
x x xx x x xy y x

E E* = Z H E* + Z H E* (4.5)x y xx x y xy y y

E H* = Z H H* + Z H H* (4.6)

xx xxx x xy y x

and

E H* = Z H H* + Z H H* (4.7)
x y xx x y xy y y

Strictly speaking, equations (4.4) through (4.7) are valid only

if E E*, E E* , etc. represent the power density spectra at a discrete

frequency w , In practice however, Zij are slowly varying functions of

frequency, and as such, ExE* , etc. may be taken as averages over some

finite bandwidth. This is fortunate since it facilitates the estimation of

the power density spectra.

B. Estimation of Power Density Spectra

There are a variety of standard techniques available for esti-

mating ExE* , E E* , etc. , the auto and cross power density spectra,

several of which will be consider6d here: In all the cases, it will be

assumed that the field componeints are given as sampled time sequences.
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1. One method that was frequently used in the past was that of

using the auto and cross correlation functions of the field components. This

method makes use of the fact that the Fourier transform of the auto correla-

tion function of a given signal is equal to the power density spectrum of that

signal. Also the Fourier transform of the cross correlation function between

two signals is equal to the cross power density spectrum of the two signals.

Blackman and Tukey (1958) have considered in detail the various aspects of

estimating correlation functions and the corresponding power density spectra

for sampled time sequences. They have given careful attention to the spectral

windows that result from truncating the time sequences and the correlation

functions. Hopkins (1966) and others have used this method for obtaining

estimates ofE E* , E E* , etc. in magnetotelluric work. This method, when
x x x y

compared with the oaer that will be considered next, has several disadvan-

tages. First it is more time consuming on the computer when many cross

spectra are needed. Second, it gives statistically correct results only

when the signals are stationary. Finally, it is more susceptible to error

from the side lobes of the spectral window when the spectra are not reason-

ably flat. Blackman and Tukey suggest that this third disadvantage can be

circumvented to some extent by digitally prewhitening the time sequences

prior to computing the correlation functions.

2. Another method for estimating the power density spectra of

the field components begins by subdividing each of the time sequences into

several blocks. For each data block one computes the Fourier transforma-

tion to obtain estimates of Ex (w), E (w), etc. Then one forms the products

E E*, ExE* , etc. Finally, for each frequency, one averages the products

over the several time blocks, thus obtaining time averaged estimates of

E E* , E E* , E H* , etc. This method is particularly well suited to s-all
x x x y x x

digital computers since only one time block of data needs to be stored in

memory at any given time, and the blocks may be quite small compared to the
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total time sequences. Also this method is especially useful for situations

where the signals contain noise bursts that are isolated in ti.me. Such

noise bursts may arise from tape drop-out, system saturation caused by

large amplitude signals, or many other sources. Such noise bursts are

often readily detectable so that data blocks containing them may simply

be omitted from the time average.

3. Another method for estimating the power spectra that is

very similar to the previous one consists of feeding the original time

sequences into a bank of narrow band digital recursive filters spanning the

desired frequency range. The outputs of these filters are then treated the

same as the outputs of the block Fourier transforms of the previous method.

This recursive filter method has essentially the same advantages as the

previous method together with the additional advantage that it lends itself

quite readily to obtaining spectral estimates equally spaced on a log fre-

quency scale. This is because the recursive filters may be designed such

that they all have the same Q and have the appropriate spacing on the fre-

quency scale. Swift (1967) has used this technique.

4. For the final method to be considered here, one begins by

Fourier transforming each of the entire time sequences. The products

E E* , E E* , etc. are then formed for each harmonic. Finally the products
xx xy

are averaged over several neighboring harmonics to obtain the desired band-

width. As far as computation time is concerned, this method is quite effi-

cient if one uses the Cooley-Tukey algorithm for fast Fourier transforms.

In fact, for a given number of multiplications, the spectral windows obtain-

able by this method are better than those obt&inable by any of the other

methods considered here. (A detailed discussion of spectral windows is

included in Chapter V.) This method, like the last one, lends itself readily to

constant Q estimates of the spectral density since the number of harmonics

averaged in each band may be made approximately proportional to the center
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frequency of the band. The primary disadvantage of this method is that,

compared to the two previous methods, it requires a fairly large number of

storage locations; in general it requires a large computer. Actually, in a

modified form which is not quite as efficient computationally, the Cooley-

Tukey algorithm is applicable to small computers. For a detailed considera-

tion of this algorithm, see Cooley (1965).

If then, by one means or another, estimates of the auto and

cross power density spectra are obtained, one can proceed to estimate the

elements of the Z matrix.

C. Estimation of Z from Auto and Cross Power Density Spectra

Consider equations (4.4) through (4.7). Under certain condi-

tions, these equations are independent so that any two of them may be

solved simultaneously for Z and Z . Since there are six possible distinct
xx x1,

pairs of equations, there are six ways to estimate Z and Zx. For example,
xx xy

the six estimates for Z are
xy

(H E*) (ExE*) - (H E*)(E E*)
Zxx x xy xx (4.8)

xy (H E*)(H E*)_ (H E*)(H E*)
x x y y x y y x

_ (HxEx)(ExHx ) - (HxH*)(ExEx )
Z = (4.9)xy (H E*)(HyH*) (H H*)(H E*)

x x y x x x y x

_ (H E*)(E H*) (H H*)(ExE)
= xx x y xy xx (.0Z = (4.10)

xy (H E*)(HyH*) (H H*)(H E*)
x x y y x y y x

_ (HE*)(E H*) (H H*)(E E*)
Zxy xx x x(4. 11)
xy (H E*) (H H*) (H H* ) (HE,)

xy y x xx yy
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Im

-(H E*) (E H*) - ('H H*)(E E*
Z 'XX- ' (4.12)

XY (H E*) (H H*) - (H H*)(H E*)
x y y y x y y Y

and

(HxHx) (E H*) (H H) (E H*)
z xH xX (4.13)

(HH ) H* H (H H*)(H H*
X y y x y y x

where Z denotes a measured estimate of Z
xy xY

It turns out that two of these expressions tend to be relatively unstable for the

one dimensional case, particularly when the incident fields are unpolarized.

For this case E E* , E H* , E H* , and H H* tend toward zero, so that
x y x x y y x y

equations (4.10) and (4. 11) become indeterminant. The other four expres -

slons are quite stable and correctly predict Zxy = Ex/Hy for the one dimen-

sional case, provided the incident fields are not highly polarized.

This same thing is true of the other three impedance elements

Zx yZx and Z . In each case there are six ways to estimate Zi., two

of whf.ch are unstable for one dimensional models with unpolarized incident

fleld. Also in each case the other four estimates are quite stable for any

reasonable earth model provided the incident fields are not highly polarized.

As was mentioned earlier, any physical measurement of E or H

will necessarily contain sorre noise. It is desirable now to consider how

such noise will affect the Z estimates defined above. Suppose that

E = E + E (4.14)x xS xn

E = E + E (4.15)
y ys yn

H =H +H (4.16)x xs xn

H =H +H (4.17)

y ys yn
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where

xs xx xy xs

Sys x yx yy ys

and E xn, E y n , H xn and H yn are noise terms. If the noise terms are all zero,

then the four stable estimates of each of the elements of Z are the same, and

Z. = Z..
1)

On the other hand, when the noise terms are nonzero, the four estimates are

in general different.

Equation (4.13) for Z corresponds to the one that Swift (1967)
xy

used. He showed that his estimates of Z. were biased down by random

noise on the H signal, but were not affected by random noise on the E signal.

Similar arguments for the four stable estimates defined above indicate that in

each case, two of them are biased down by random noise on H and are not

biased by random noise on E 'for example, equations (4. 12) and (4.13) for

Z XI) while the other two are biased up by random noise on E and are not

biased by random noise on H (foi example, equations (4.8) and (4.9) for

Z xy). The effects of the noise are most easily seen for the one dimensional

model. For this model, if the incident fields are depolarized so that E E*xy
E H* , E H* , and H H* tend to zero, then equations (4.8) and (4.9) for
X X yy y

Z reduce to
xy

Z =E E*/H E* (4.18)
xy xx yx

Equations (4. 12) and (4. l) reduce to

Z =E H*/H H* (4.19)xy x y y y
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If one assumes that E and H are given by equations (4.14) andx y
(4.17) and the E and H are random and independent of the signals and of

yn xn
each other, then the expected values of the power density spectra are

<E E*> = <E E* > + <E E* >
x x xs xs xn xn

<H H*>= <H H* >+ <H H* >
y y ys ys yn yn

<E H*>= <H E*> =<E H*>x y y x xs ys

Thus, if the spectral estimates contain enough terms in the average so that

the cross terms may be neglected (i.e. E E* ,etc. are negligible), then
xs xn

equation (4.18) gives

E E* + E *
xs xs xn xn Z (I +E noise power (4.20)

xy H E* xy E signal
ys xs

and equation (4.19) gives

E H*
xs ys H noise power (xy HH* +H H* xy H signal power

ys ys yn yn

Thus the estimate shown in equation (4.20) is biased to the high side by

random noise on E while the one in equation (4.21) is biased to the low

side by random noise on H. For similar percentages of random noise on

E and H, an average of the varlous.estimaths .hopefully will bb better.

than any one estimate by itself. Also the scatter between the various esti-

mates should be a good measure of the amount of random noise present.

In practice of course things are not quite this neat because the

assumption that the cross terms in the average power estimates are negigible

may not be valid. For example, terms of the form E H * will not be
xn yn
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negligible if the two noises are coherent. Such might be the case for certain

types of instrumentation noise or local industrial noise or 60 cps power line

noise. Also terms of the form E E* will not be negligible if the noise is
xs xn

coherent with the signal source. Even if all of the noise terms are random

and independent of the signals and of each other, the cross terms may not

be negligible if the average power estimates do not have enough degrees of

freedom.
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V. NOISE PROBLEMS

As was mentioned in the previous chapter, any physical measure-

ment of E or H will include some noise. This noise may be in the form of

a constant bias caused by inaccurate calibration of the measuring system,

or it may be a nonlinear effect such as would result from drift in the

sensitivity of the measuring system. On the other hand many types of noise

are independent of the signal. These include such things as amplifier noise,

60 cps power line noise, digitizer round off noise, and, if the signals are

recorded in analog form, tape recorder noise. Also,, there is always the

possibility of having source generated noise. For example, if the incident

fields include sr.ne plane waves with horizontal wavelengths short compared

to a skin depth in the earth, the resulting surface fields may be represented

as containing noise.

In an event one can always represent the measured field components

as sums of signals and noises as indicated in equations (4.14) through (4.17).

The degree to which the noise terms are independent of the sijnal terms

depends entirely upon the source of the noise. In the cases where the noise

terms are dependent upon each other or upon the signal terms, the effects of

the noise upon the Z estimates vary according to which estimates are used,

and according to which signal and noise terms are coherent. No attempt has

been made to catalogue al! of the various possib B combinations of signals and

coherent noises.

For the situation where the noise terms are independent of each other

and independent of the signals, some interesting results can be shown.

A. General Incoherent Noise

As was mentioned in the previous chapter, the various estimates

of the elements of the Z matrix are biased either up by random noise on E or

down by random noise on H. This is caused by the fact that the auto power

44



den,. ity spectra are in general biased up by random noise, while the cross

powe," density spectra are not biased. For example, suppose that

E -E + E (5.1)
x xs xn

and

H =H +H (5.2)
y ys yn

where

<E E* > 0 (5.3)
xs xn

<H H* >= 0 (5.4)ys yn

<E H* > = 0 (5.5)< xn yn

and where the brackets < > denote "expected value of." Clearly, for this

situation

<E E*> =<E E* >+<E E* > (5.6)x x xsxs xn xn

<H H*> =<H H* >+<H H* > (5.7)

y y ys ys yn yn

and

<E H*> = <E H* > (5.8)
x y xs ys

Equation (5.8) implies that the cross power can be estimated to any arbitrary

degree of accuracy by measuring the fields for a long enough period of time.
On the other hand, equations (5.6) and (5.7) imply that the estimates of the
auto powers will be biased regardless of the length of time that the fields are

measured.

These ideas lead one to consider an alternate approach to the
problem. Suppose that one performs two simultaneous independent measure-

ments of one of the field components, say E . If the results are

x
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E =E + E (5.9)Exl Exs xnl

and

E =E + E (5.10)
x2 xs xn2

where

<E E* > =0 (5.11)
xs xnl

<E E* >=0 (5.12)xs xn2

and

<E E* > 0 (5.13)
xnl xn2

then

<E E* > = <E E* > (5.14)xl X2 xsxs

Equation (5.14) implies that the E auto power density spectrum can be estimatedx
to any arbitrary degree of accuracy from two simultaneous noisy measurements

of E if the measurements are taken for a long enough period of time and if thex
noises on the two measurements are independent.

In general, if one has double measurements of elther-the two tan-

gential components of E or the two tangential. ompori nts of H,. one.can obtain

estimates of the four elements of the Z mitrlx that are not biased by random noise.

B. Numerical Noise

At this time consideration will be given to several specific types

of numerical noise. The term numerical noise as used here refers to any noise

that is artificially injected into the signal when the latter is sampled for

numerical processing.

1. Perhaps the most commonly recognized form of numerical noise

is that which is usually referred to as aliasing. In accordance with the samp-

ling theorem, If a continuous function which is sampled at a rate f has any
0

frequency components greater than the Nyquist or folding frequency (equ3l to

f /2), these components will be lost from the sampled version of the function.
0
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If any spectral analysis is performed on the sampled function, the lost fie-

quency components will appear folded down into the desired spectrum, and

will of course represent noise. Since aliasing is a well documented and well

understood phenomenon, nothing more will be said about it here except to

note that anyone who deals with magnetotelluric data or any other form of

sampled data should be aware of it.

2. The next type of noise that will be considered here is round off

error on the analog-to-digital converter. This type of noise arises from the fact

that the A-D converter has only a finite number of discrete levels. Typically

the signal passes through many levels between sample points. For this reason,

the noise can be characterized quite well as a sequence of independent random

variabl6s with amplitudes ranging from e/2 to -e/2 with a flat distribution where

e is the distance between adjacent levels on the A-D converter. Thus the noise

spectrum will be flat. The total noise power for 2m data points will be

Total Noise Power x d e 2 2 (5.15)
1 -- x dx = e2,/1/ 2(o15

-C/2

Since the spectrum Is flat, the average noise power per harmcnic would be

e 2/12m for m harmonics. If the signal spectrum were also flat, the average

signal power associated with each harmonic would be about (Me) 2/12m where

M Is the number of digitizer levels that corresponds to the maximum peak to

peak amplitude of the signal. Thus, the signal to noise ratio would be on the
2order of M . In practice, it frequently happens that the signal spectrum is not

flat. In this case the expected signal to noise level for a given harmonic Is

about
M 2 Signal power in harmonic

Average signal power per harmonic

2 Signal power in harmonic (5.16)
-Mm Total signal power
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if there is a total of m harmonics.

As an experimental check of the digitizer noise, the following

was done. A typical set of actual magnetic field data was selected. It was

Fourier transformed, and each harmonic was multiplied by a theoretical Z

computed from a typical layered model.. The resulting theoretical E was

Fourier transformed back to the time domain and digitized; that is, rounded

off to a given number of significant bits. The resulting E together with the

original H were used to compute an apparent resistivity versus frequency

curve. Figure 7 shows the Individual harmonics of the true E power density

spectrum along with the expected digitizer noise levels for eight and twelve

bit digitizing. Figures 8 and 9 show apparent resistivity versus frequency for

the individual harmonics for eight and twelve bit digitizing together with the

true pa computed from the assumed model. Figures 10 through 12 give the

corresponding results when the power density spectra are first averaged in

bands of constant Q. From these figures, it is seen that, as expected, the

apparent resistivities computed from the individual harmonics have random

scatter when the signal power is not sufficiently Large compared to the noise.

Also as expected, the apparent resistivities computed from the averaged power

estimates are biased to the high side by random digitizer noise on E. These

experimental results are consistent with the theoretical discussion of digitizer

noise.

3. The next type of numerical noise that will be considered is

that which results from truncating the time series to a finite length T. Suppose

that one of the field components has an amplitude that is described by f(t) fo"

all time. The Fourier transform F(w) is then given by

€o

F(w) f(t) e- jwt dt (5.17)

-- O

It is then desired to approximate F(w) by F (nw ), a Fourier series representation
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of f(t) over some time interval T. Thus

T/2 -Jaw t

F (nw) = 5 f(t) e o dt; n0- 1, + 2,... (5.18)

-T/2

where w = 2rr/T.
0

Notice that

F(w) = f(t) d(t) e dt (5.19)

where d(t)= 1 for Iti < T/2 and d(t) =0 for ItI > T/2. Thus, from the

convolution theorem

F(nw) = 5 F(w) D(nw- w) dw (5.20)

where

D(w) = 5 d(t) e j  d t
-e

T 2 eJWt dt

-T/2

W 0 (Trw/w O)

D(w) is usually called the spectral window since the observed spectrum F(w) is

equal to the true spectrum F(w) convolved with D(w).

The spectral window defined by equation (5.21) is actually not very

desirable since the side lobes go off only as I/w. A better window, usually

known as the Hanning window Is obtained by letting

d(t) .54- cosu)ot ; It I < T/2 (5.22)
t  ; It I > T/2
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Then

D(w) = (.5 +.5 cosw t) e- j w t dt

-T/2

2
sin ( w/w)
0 0

- (5.23)
2_ 2

w (w -w)

The main lobe of this spectral window is twice as wide as the main lobe of
3the previous one; however, the side lobes go off as 1/w . The two windows

are compared in figure 13.

One could define windows that have even smaller side lobes;

however, they would necessarily have wider main lobes, and as will be seen

later, this is not desirable. The Hanning window seems to be an .idequate

compromise between main lobe width and side lobe height.

One is then faced with the fact that any physical estimate of the

power density at a particular frequency w is necessarily a weighted average

of the crue power density over a band of frequencies, the weighting function

being the spectral window D(w). If the impedance function that one is attempt-

ng to estimate does not change significantly over the bandwidth defined by

D(w), then the estimate will not be corrupted by the truncation effects. In

practice, however, the impedance does change some so that there will be some

truncation noise. The problem is particularly severe if the power density

spectra have resonant peaks or other steep slopes. If one is attempting to

estimate the power density near the bottom of a steep slope, the contributions

from the side lobes of the spectral window may be significant compared to the

contribution from the main lobe. This effectively broadens the bandwidth over

which the impedance function must not change.

These considerations lead one to inquire into the spectral behavior

of the E and H fields used in magnetotelluric surveying. One would hope that

the general shape of the spectra of the incident E and H fields might be more
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or less independent of time and space coordinates. If this were the case, then

tke measured total H field, which is close to twice the incident H field, would

also be reasonably stationary with respect to time and space coordinates, and

hence it could be prewhitened. On the other hand, the total E field is a

strong function of the local conductivity structure and hence, although it would

be stationary with respect to time, the shape of the spectrum would change

from one location to the next as the conductivity structure changes. But still,

the surface impedance Z is a well behaved function of frequency and as such

one would expect that if the E signals were passed through the same filters as

were designed to prewhiten the H signals, the resulting filtered E signals

would have a reasonably well behaved spectrum. This, in general, turns out

to be the case. Actually, as is indicated by equations (2.16) and (2.27), Z

tends on the average to be proportional to the square root of frequ..-. so

that an optimum filter for E would differ from the H filter by a factor of I/V_ ,

With these ideas in mind, a study was made of the spectra of

some actual H field data recorded in central Texas. Figures 14 and 15 give

composite plots of Hx and H power density spectra obtained from 104 different

data samples recorded at five different sites in central Texas. This data was

recorded by D. R. Word, and a magnetotelluric interpretation of the data is

given by him (Word, 1969). From these figures it is apparent that ac least for

the locations and times Involved here, the general shape of the H power density

spectra is fairly well defined. However, there are some definite resonant peaks

(for example, around .07 cps aid around 2.5 cps) that appear in some of the

spectra but are absent from others. T'ese results are consistent with those

obtained by other investigators (Hopkins, 1966), (Bleil, 1964). It is belleved

that if the analog H signals are prewhitened according to the general trends

shown in figures 14 and 15, the Hanning windDw can be used without encounter-

ing any side lobe difficulties except perhaps immediately adjacent to the

observed resonances.
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In order to get an estimate of the effects of truncation upon the

individual harmonics of the Fourier spectra, consider the following problem.

Assume a one dimensional case with

E(w) = Z(w) H(al)

Suppose that the H signal is prewhitened with a filter thit has a response

FH(w), and the the E signal is passed through a filter whose response is

FE(w) which may or may riot be the same as FH(w). Assume that the outputs

of these filters are H o(W) and E (w) respectively, so that

Z(w) ( E(w) F (5)
Z~) H(w) H (w) F(W

o Ew)(.4

Then define

E (w) Z(w) FE(W)
G H (= w) - ( )  (5.25)

Thus G(w) is the ratio of the prewhitened electric and magnetic field signals

and will be equal to Z(w) if the two prewhitering filters are the same. If the

prewhitened signals are then sampled and a Fourier series analysis is per-

formed on each, the results will be

H (nw) H(nw- w) D(w) dw (5.26)

and

E (nw) E(nw- w) D(w) dw

= Ho(nw° - u)) G(nw° - w) D(w) dw (5.27)

where D(w) is again the spectral window used. If G were constant over the
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width of the window, then one would ha.-e

E(nw) = G(nw) HO(nw -w) D(w) dw

-m

= G(nw) H(nw) (5.28)
0 0

the desired result. In practice however, G usually varies some. Suppose

that in the neighborhood of nwo , G can be represented by the first two terms

of a Taylor series expansion. Thus

G(k) = G(nw ) + (X - nw ) G'(nw ) (5.29)

where

G'(w) = dG(w) (5.30)
dwJ

If one lets X = nw - w, equation (5.29) gires0

G(nw - w) G(nw) - wG'(nw) (5.31)
0 0 0

Putting this into equation (5.27) gives

E(nw) = Ho(nwo - w) [G(nw -wG#(nw )J D(w) dw
0 J 0 0 0

-s

= G(nwo )H(nw o ) - G'(nwo) Ho(nw - w) D(w) wdw (5.32)
-m

If one then defines

G' (nwo) = E(nw )/H(nw ) (5.33)

and

error = EG(nw) - G(nw) /G(nw o) (5.34)

then from equation (5.32)
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S H(nw- w) D(w) d

G (nw G G(nw ) G' (nw ) ~(5.35)
0 0 0

H (nw- w) D(w) dw
0-0

and

G' (nw5 H 0(nw 0~ Q)D(w) wdw

error 0 O(5.36)
G(nuw')a

o 5 H(nw0 w ) D(w) dw

Assume now that the integrals in equation (5.36) can be approximated by sum-

miations of the form

H(nw) H (nww) D(w) dw

m

= H 1 D1  (5.37)

where

H H (nw -i~u) (5.38)
on,i 1 0 a

and
m

L D1 (5.39)

Then

W (nw) 5 H (nw -w) DW wdw
- 0 0

m
H D (5.40)on H 1  i m
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where 0l is the maximum value of w contributing to the integral. That is,

w Q corresponds to I = m.

Assume that for any fixed n, Hon l are a sequence of 2m +1

independent complex random variables whose components have normal distri-

butions and zero means. Also assume that the original H signal was pre-

whitened enough so that over any given band, the expected value of the power

density is constant. That is,

4 °  H* > = 2 +0, ±1, 2 ±m (5.41)on,i on,I n

Since H are assumed to be independent and have zero means,on, £

<Ho > 0 (5.42)
on, I

and

<Hon , > = 0 ; iHj) (5.43)
on, i on,J

Since H are complex normal random varfIUs, H (nwo ) and W(nwo), which
on, 1 0)0

are linear combinations of Hon Xmust also be complex normal random variables.
Consider the statistics of H (nwo) and W(nw).

0 0

m
<H(nwo)>= <L Hon, D,>

i = - ra

m
= .S. <Hon >D l

Li on, I I
i-rn

-0 (5.44)

m m
<H(nwo) Hl(nw)>=<(Z Hon 1D,)(X HonJDo)>

(Eq.-m j -m

(Eq. cont'd on next page)
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In

SZDDJ<HHon, on,j>
i=-m J-m

m
S 2D 2 H* >
= .D <on, i on, i

i=-m

m

2 D2

n D (5.45)
i=-m

m in
<W(no)=< HoD 9->

0 n i In1=-rn

In

--- <H >D i
m on, i

-0 (5.46)

m mI~o,, "on
1=-rn j=-m

i( 2 In~ Hon
SDDij <H H* >

lJ .on, on,J
i=-m J = -m

an i D (5.47)

• :! =-rnm .i

: . i.m m
(nw) W*(nw0)> =< Hn D) on, Dj

=-j = -,m

(Eq. cont'd.)

56



m m

ID 1D <H H* >
SI i Dj <on,i on,j
i=- m j=-m

m
a' 2D (5.48)f
=-r

2 2If the spectral window D(w) is an even function of w, then D,= Di and
m -

i D =0 (5.49)
1=-rn

so that

< H (nwo ) 7VA((n o ) > = 0 (5.50)
0 0

Thus, H (nwo ) and W (nw ) are independent complex normal random variables
0 0

with zero means and with variances defined by equations (5.45) and (5.47).

A standard exercise in random variable theory indicates that if two

random variables X and Y are normal and independent with zero means and

equal variances, then the function

V -- X2+y2

has a Rayleigh distribution (see for example, Papoulis, 1965). Since H(nw )

and W(nw ) are complex normal random variables with zero means, their

real and imaginary parts satisfy the conditions of the above exercise. Thus

IH(nwo) I and IW(nw0) must have Rayleigh distributions.

Another standard exercise in random variable theory indicates

that if
V-X/Y

then the distribution of V is given by

Fv(v) = 5 fw(x,y) dxdy+ f fY(x,y) dxdy (5.51)

O -u -u yv
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where f (x,y) is the joint density of X and Y (see Papoulis, 1965). If X and

Y are independent and have Rayleigh distributions then equation (5.51) becomes

o yoFV(v) = 5 5 f~(y) dxdy
0 0

f y(y) Fx(yv) dy

0

2 2 /2 2
-y /2a xyv) /2xL5 e y1 -e ]dy

cL
o y

=1- (5.52)
va 2

x

where a 2 = X2> and a 2  <y2>
x y

Now recall that H (nw I and IW(nw) I have Rayleigh distributions.

From equations (5.45) and (5.47)

m
<IH(nw o)I 2>=a a D (5.53)

.=-m

and m2 2
< Iw(nw)I 2> () i 2 D 2  (5.54)

0m n L i

Also, from equations (5.36), (5.37), and (5.40),

G (nw ) W(nw
0 0

I error I = G'tnwo) 1(nwo) (5.55)
0 01

Recall that F (v) is by definition the probability that V : v. Thus, equations
V
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(5. 52) through (5. 55) combine*to give

Pflerrori ci 1 - )(5.56)

ol 2

where

(57
22

2 i-m

and where PfXJ denotes the probability, then X occurs. Recall from equations
(5.37) through (5.40) that the summations arose as approximations to integrals.

If one now lets m - *and passes back to the integral formulation, equation.

(5.57) becomes

D D2 W dw

2 -

w 2D 2(W dw

Since D(u)) has been assumed to be an even function of w , and since

PfjerrorlI >c e 1- P ferrorI :5 e

one has from equation (5.56)

1
P .errorl >e)2 (5.59)

2 G~~v 2 D(w) dw
1+6 2!G(nwo) S Dwd

If D(w) is a block window of width BW, equation (5. 59) becomes
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*12

1+1

l(BW)24 G '(nw0 )

or1

P lerrorl > = 1 (5. 60)

1+ 12 C AG(nwo)

where AG(nwo) =G'(nw ) *BW change in G(w) over a band of width BW around

nw 0 Similarly, for the Hanning window with

2
w

D (w) S Sin - (- -) (5.61)W2 2

one obtains

Pt lerrori > £3 2 (5.62)

2 G (nw)
2 G'(nw)

W0

It has been observed that for one dimensional models

I dloga a(W) I
a 9 -: (5.63)

2 dlogw 2

Now if one uses the same prewihitening filters on E and H

IG(u)I Z I(W)I W.-- pcF7 -W (5.64)

and it follows that

1 d logilGMw 3 (5.65)
4 d log w 4

or

d logjlGMw - u d IGMI (.6
d log w IG(w) I dw 4
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or, for the worst case

I G(nw )j 4nw

G(nw) 0 (5.67)
0

Thus, for this case equation (5.62) becomes

P(jerrorl > e) (5.68)

3

Equation (5. 68) indicates that, as expected, the probability of the

error being greater than e goes down as e increases. Also, as expected, the

probable error decreases as n, the harmonic number, increases. The latter

result is expected since J AG(w)/G(w) I should be proportional to the percentage

bandwidth of the window, which in turn is inversely proport.ional to the harmonic

number. The results of equation (5.68) are summarized in figure 16.

It is doubtful that the results shown in figure 16 are useful quanti-

tatively because of the assumptions made about the form of H (w), the pre-
0

whitened magnetic field signal. In particular, it was assumed that
2 < H (w) H (w)*> is independent of frequency. In practice this is not

cr 0 0 0
attain.-ble since, as noted earlier, magnetotelluric signals are not really sta-

tionary.

In order to get some type of estimate of the effects of truncation

upon realistic data, the following experiment was performed. A typical set of

actual magnetic field data was selected. It was Fourier transformed using the

Hanning window, and each harmonic was multiplied by a theoretical Z computed

from a typical layered model. The resulting theoretical E was Fourier trans-

formed back to the time domain. This E, together with the original H, were

truncated to some fraction of the original length. The resulting truncated E

and H signals were Fourier transformed, and apparent resistivities were com-

puted from each harmonic. These apparent resistivities were then compared

with the true apparent resistivities for the assumed model. This experiment
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was repeated for several different models with several different original data

lengths and several different truncated data lengths. The results showed a
very definite trend. In each case, the apparent resistivities computed from

the first eight to ten harmonics were significantly in error, The higher

harmonics showed very little error. The amount of error on the first few
harmonics depended significantly upcn how white the spectra were; the

whiter spectra had less error. Figures 17 and 18 show the results of a

typical run. Figure 17 shows the individual harmonics of the spectrum of a
truncated H signal. Figure 18 shows the corresponding apparent resistivitles

along with the true apparent resistivity curve for the assumed model.

These considerations lead one to believe that the first few har-

monics of a Fourier spectrum of typical magnetotelluric data are likely to be

corrupted considerably by truncation error.
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VI. CONCLUSION

The methods of analysis discussed in the foregoing chapters have been

implemented in a digital computer program constructed by the author for use on

the CDC 6600 computer at The University of Texas Computation Center. This

program estimates the power density spectra of sampled E and H signals by

computing the Fourier transforms of the sampled data using the Cooley-Tukey

algorithm, and averaging the resulting auto and cross powers in frequency bands

of constant percentage bandwidth as discussed in Chapter IV, Section B.4. The

Hanning window discussed in Chapter V, Section B.3 is used for the Fourier

transforms. The elements of the Z matrix are then estimated from the power

density spectra using the techniques described in Chapter IV, Section C. The

principal axes are then determined in accordance with the discussion in

Chapter III, Sections C and D. Also the approximate strike direction is deter-

mined from the vertical magnetic field as discussed in Chapter III, Section E.

As diagnostics, the tensor coherency mentioned in Chapter IV, Section C, and

the two-dimensionality parameters mentioned in Chapter III, Section D, are

determined.

This program has been used extensively for analysis of magnetotelluric

data recorded in central Texas by Darrell Word. Samples of the results are

given by Word (1969). For most of the data analyzed using this program, the

resulting surface impedance estimates have been consistent and repeatable.

In areas where the geology is reasonably one dimensional, these surface imped-

ances have been successfully interpreted in terms of horizontally layered models.

The resulting resistivity profiles have agreed quite well with independent obser-

vations such as resistivity well logs in cases where the latter have been avail-

able.

In areas where the geology is more complex, particularly where it is

highly three dimensional, interpretation has not been so successful. However,

even here the surface impedance estimates have been fairly repeatable. Thus,
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it is believed that now, perhaps for the first time, the surface impedances

have been measured more accurately than they can at present be interpreted.

For this reason, it is believed that future contributions to the science of

magnetotellurics must come in the area of interpretation.
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